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ABSTRACT
Audio Fingerprints (AFP’s) are compact, content-based repre-

sentations of audio signals used to measure distances among them.
An AFP has to be small, fast computed and robust to signal degrada-
tions. In this paper an entropy based AFP is presented that performed
very well when the signal was corrupted with lossy compression,
scaling and even 1KHz Low-pass filtering in the experiments. The
AFP is determined by computing the instantaneous amount of infor-
mation of the audio signal in two-second frames with fifty percent
overlapping, the resulting entropy signal is binary coded in order to
compare different interpretations (e.g. live vs. studio recording) of
the same song with good results. The AFP’s robustness is compared
with that of Haitsma-Kalker’s Hash string based AFP with encour-
aging results.

1. INTRODUCTION

AFP’s are mainly used to link unlabelled audio to metadata such as
the song’s title or the singer’s name, other uses of AFP’s include du-
plicate detection in Multimedia Databases [1] and Monitoring Radio
Broadcasts [2]. The use of characteristics in the frequency domain
predominates among most fingerprinting techniques [3], [4], [5]. In
search for a technique that wouldn’t be restricted to stationary or
quasi stationary signals but would work even if the signal has a frac-
tal structure we designed an Information theoretic based AFP, this
AFP was also motivated by the intuition that is information what the
human brain really perceives.

1.1. The Entropy of a Signal
The Information content I(pi) in a value vi also called self informa-
tion, depends only on its probability pi = P (vi) to occur, the less
likely a value is to appear, the more information will bring it does
show up. Therefore, the self information must be a monotonically
decreasing function of the probability as in (1) [6].

I(pi) = ln
“ 1

pi

”

= −ln(pi) (1)

The entropy H is the expected information content in a sequence,
it is the average of all the information contents weighted by their
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probabilities to occur as in (2). The entropy of a signal is also a
measure of how unpredictable it is, the entropy should be minimum
when the signal is a constant k since the signal is most predictable
and the corresponding Probability Density Function (PDF) is a uni-
tary impulse located at k, that is pi = δ(k) and its entropy is zero as
in (3). On the opposite case, if the signal has a uniform distribution
then its entropy is maximum due to the fact that the sample values
are most unpredictable and since pi = 1/n for n possible values, its
entropy would be log(n) as in (4).

H(x) = E[I(p)] =
n

X

i=1
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n
X
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piln(pi) (2)
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i
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1

n
) = ln(n) (4)

Say for example that the sample size were 16 bits, then the max-
imum entropy would be 11.09 (ln(216)). Of course in a real audio
signal this level of entropy is nearly impossible since it would require
that each possible value of the samples appeared the same number
of times. For a frame of 2.9721 sec at a sampling rate of 44 100
samples per second and a sample size of 16 bits, each possible value
would have to appear exactly twice.

2. COMPUTING THE ENTROPY SIGNAL

Computing the entropy of a signal requires some estimation of the
PDF p1, p2, .., pi, .., pn, parametric methods, non parametric meth-
ods and histograms can be used to estimate pi. In parametric meth-
ods, first a kind of distribution is chosen and for that its parameters
are determined [7], this methods are advisable when the type of dis-
tribution is known a priori and the amount of data involved is not
large. In non parametric methods, no assumptions are made about
the kind of distribution the PDF belongs to, the PDF is shaped by the
data which is in turn smoothed by some kernel in an iterative pro-
cess that eventually converges, the most popular of these methods is
the Parzen window estimation method [8], however,nonparametric
methods are computationally expensive and so not very useful for
realtime pattern recognition applications. To be able to compute the
entropy in real time enable its use in more applications like contin-
uos speech recognition or radio broadcasts monitoring. Histograms
are very easily updated since every time a new sample of audio is
read only an increment operation at its corresponding entry in the
histogram and a decrement operation at entry that corresponds to the
sample that gets out of the frame is needed. Equations (5) and (6)



• Read a Frame of length N from the audio input stream and
save it into a FIFO buffer

• Fill the lookup table L of size N
Li = i

N
log( i

N
) ∀ 1 ≤ i ≤ N

• Determine histogram Hist and compute entropy H as indi-
cated by equations (2) and (5 for the first frame of audio saved
on the FIFO buffer

• Send H to the output stream
• While there are more samples of audio

-Read one sample from the stream audio, save it in
SampleIn and add it to the FIFO buffer

-Read one sample from the FIFO buffer and save it into
SampleOut

-Substract the old invalid information from the expected
information (entropy) H = H + L[Hist[SampleIn]] +
L[Hist[SampleOut]];

-Update the histogram Hist[SampleIn] + +;
Hist[SampleOut] −−;

-Add the new valid information H = H −

L[Hist[SampleIn]] − L[Hist[SampleOut]];
-If the number of samples read is a multiple of N/2,

send H to the output stream
• End (While)

Table 1. Algorithm to obtain the Entropy signal

can be used if histograms are chosen, however we have to be careful
that the amount of data involved is high enough to avoid peaks in the
histogram. The certainty of the histogram method is ensured when
thousands of samples (i.e. corresponding to two seconds of audio)
are used to built a histogram table of only 256 entries (i.e. using a
sample size of 8 bits).

pi =
fi

N
(5)

Where fi is the number of times that value vi occurs in the sig-
nal x as in (6).

fi =
N

X

j=1

ϕ(xj , vi) (6)

where ϕ(x, y) = 1 if x = y and ϕ(x, y) = 0 otherwise

The method chosen for estimating the PDF in this work is based
on histograms, the frame of audio is advanced only one sample at a
time, this allows us to compute the entropy of the actual frame by
making a small update to the already determined entropy of the last
frame, to reduce processing time, a lookup table L is used to avoid
direct calls to the logarithm function. The algorithm to obtain the
Entropy signal is in table 1.

In figure 1 the entropy signals of the songs “Diosa del Cobre
(Miguel Bosé and Ana Torroja)” and “Corazones (Miguel Bosé and
Ana Torroja)” are shown, to the left the originals (wav@1411Kbps)
and to the right the lossy compressed versions (mp3@32Kbps). It is
clear how the entropy signals corresponding to the same song have
almost identical waveforms, entropy signal is apparently invariant to

lossy compression, furthermore, the entropy signals are quite differ-
ent between songs even thought they belong to the same album of
the same artists, this is necessary for an AFP to work.

0 100 200 300
3.5

4

4.5

5

cobre wav@1411Kbps

0 100 200 300
3.5

4

4.5

5

cobre mp3@32Kbps

0 50 100 150 200 250
3.5

4

4.5

5

corazones wav@1411Kbps

0 50 100 150 200 250
3.5

4

4.5

5

corazones mp3@32Kbps

Fig. 1. Entropy signal of the songs “Diosa del Cobre (Miguel Bosé
and Ana Torroja)” in and “Corazones (Miguel Bosé and Ana Tor-
roja)” To the left the instances wav@1411Kbps and to the right the
instances mp3@32Kbps)

3. THE ENTROPY-BASED AFP

The vector with the entropy signal obtained as described in Table 1
works very well when using it as a key for identifying songs, this
can be concluded by observing the figures 2(a),(b),(c) and (d), in
this figures the entropy signal of the original (wav@1411) of the
song “Diosa del Cobre (Miguel Bosé and Ana Torroja)” is plotted
along with a lossy compressed version (mp3@32Kbps) (figure 2a),
a filtered version (2b), a louder version (2c) and an equalized ver-
sion (2d) of the same song. Despite the great loss in the sound
quality of the lossy compressed and the filtered versions, their en-
tropy signals are very similar, this motivated the use of the vector
that stores the values of the entropy signal as an AFP (figures 2a and
2b). The entropy signals are almost identical when comparing the
original song and its louder version disregarding the vertical shift
(figure 2c). Equalization does deform the entropy signal (figure 2d),
however, the position of local maxima and minima seems to be the
same, this can be taken into consideration when coding the entropy
signal.

An AFP must be compact, then the entropy signal’s first deriva-
tive is coded (i.e. “1” if it is positive and “0” otherwise), this way, in-
stead of having 239 floating point values for a 4 minute song, only 30
bytes are needed. The resulting string is the proposed entropy based
AFP. The Hamming distance is used when comparing the AFPs of
two audio files.

Three additional considerations were made in computing our
AFP. First, in stereo signals, both channels are averaged so that the
audio signal is converted to mono aural. Second, the signal is con-
verted to 8 bits per sample so that the entropy values will vary from
zero to 5.55 (ln(256)), this makes the AFP robust to changes in
precision. Finally, the frame’s length is adjusted so that it has two
seconds of audio in the buffer for the determination of the histogram,
this means adjusting the value N in equations (5) and (6). The AFP’s
length equals the duration of the audio it represents in seconds mi-
nus one, this is convenient for comparing whole songs since different



Table 2. Parameters for the equalizer
KHz .06 .17 .31 .6 1 3 6 12 14 16
dB 20 10 0 -5 -10 -5 0 5 10 20

instances of a song will still have AFP vectors of the same length in-
dependently of the sampling rate.
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(a) mp3@32 compressed
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(b) 1KHz Lowpass filtered
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(c) Louder
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Fig. 2. Entropy signal of the song “Diosa del cobre” (Miguel Bosé
and Ana Torroja) plotted along with several versions of the same
song

3.1. Experimental Results on Robustness
In order to measure the certainty of the proposed AFP, four kinds of
degradations were considered: Lossy compression (mp3@ 32Kbps),
low-pass filtering with 1KHz of cutoff frequency, equalization ac-
cording to table 2 and scaling of fifty percent of the amplitude with
clipping limitation. Thirty nine songs were used so the degraded
versions along with the original one made a total of 195 audio files,
these files were put into comparison against each other and all of
the 38 025 resulting distances were stored in the locations of the
confusion matrix and represented as gray tones in figure 3(a), a low
distance is represented as a dark gray tone and a high distance as a
light gray tone. A confusion matrix is a way of checking at a glance
the discriminative power of an AFP, the first raw have the distances
between the first audio file and the rest of them, the second raw are
the distances between the second audio file and every other one, and
so on. Since the audio files share a prefix if they correspond to the
same song and have a suffix depending on the kind of degradation
it suffered. The files were compared in alphabetical order so the
ideal resulting graphical confusion matrix would be all white with
39 black squares along the main diagonal, each square would have
to be exactly five pixels wide. To put this comparison in perspec-
tive, the same experiment was made according to the specifications

Table 3. Results on Robustness for our entropy-based AFP
LowPass Comp EQ Loud

Original 90 95 47 98
LowPass 85 85 90

Comp 34 98
EQ 49

Table 4. Results on Robustness the Hash String based AFP
LowPass Comp EQ Loud

Original 85 30 59 100
LowPass 22 46 85

Comp 15 30
EQ 59

of [5], the confusion matrix is graphically depicted in figure 3(b) but
the expected black squares are missing.
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Fig. 3. Confusion Matrixes store the distances between each audio
file and every other one from a collection of 195

To asses an AFP’s robustness, its capacity to form clusters of
audio files corresponding exclusively to only one song had to be
checked, for that issue, the maximum distance that would make zero
the number of false accepted songs of the test set was determined,
using it as a threshold, the percentage of pairs of audio files that
being versions of the same song had a distance below it was de-
termined. In Table 3 this percentages can be seen for all the com-
binations of degradations considered when using the entropy based
AFP. For example, the percentage of originals against their filtered
versions is 90 while the compressed versions against the louder ver-
sions is 98. In Table 4 the results of the same experiment using
Haitsma-Kalker’s Hash String based AFP are shown. Tables 3 and
4 show that the entropy based AFP performed better than the Hash
String based AFP except for the equalized versions. Pieces of one of
the test’s song in the various degraded versions can be accessed in
http://lc.fie.umich.mx/∼camarena.

4. MATCHING DIFFERENT INTERPRETATIONS OF THE
SAME SONG.

When comparing two different interpretations of a song, it was found
that the entropy signal changes considerably even if played by the
same musicians, this differences are due to innovations introduced
by the artists consciously or not. An example of this fact can be



seen in figure 4 where the entropy signal of two versions of the song
“Yellow Submarine (The Beatles)” are shown. We believe it is still
possible to discriminate these songs from the completely different
ones. In order to accomplish this goal we have to make use of an
alignment technique. The edit distance or “Levenshtein distance”
[9] between two strings is used to know how similar two songs are,
this distance is defined as the total cost of edit operations one string
needs to become identical to another one, the possible edit oper-
ations are “replacement”, “deletion” and “insertion”, a cost of 2.0
was assigned to the replacement operation and a cost of 1.0 to the
other two operations, this way insertions and deletions are preferred
which is good for our purpose. For example, a short segment of 9
seconds of audio coded as 11001001 would have an edit distance
of 5.0 with the 10 seconds segment of audio coded as 110110010
(11001001 → 110101001 → 1101101001 → 110110001 →

1101100101 → 110110010).
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Fig. 4. The entropy signal of the song “Yellow Submarine” inter-
preted on two different events by “The Beatles”

4.1. Experimental Results on Flexible Matching

Other interpretations of four songs already included in the test col-
lection were considered, so 43 songs in four different degraded ver-
sions (Compressed, filtered, scaled and the original) made a total 172
audio files, the ideal confusion matrix would have 43 black squares
along the main diagonal only with four of the dark blocks being eight
pixels wide instead of four, the resulting confusion matrix from the
experiment is shown in figure 5, apparently the Levenshtein distance
not only allows us to discriminate the completely different songs
from the interpretations of the same but it also works better than the
hamming distance in concern of robustness, however take in consid-
eration that equalization was not included in this last experiment and
that Levenshtein distance is more expensive than Hamming distance
computation.

5. CONCLUSIONS AND FUTURE WORK

This Entropy Based AFP can be used when dealing with large databases
since an even more detailed representation of the songs may slow
down the matching process. The entropy signal was proved useful as
an AFP or even for matching different versions of the songs, which
is beyond the requirements of AFP’s. However, equalized versions
were not better identified than the reference AFP, this AFP might be
enhanced by combining the theory of human ear’s modelling before
determining the entropy signal, that way the information would be
computed in the perspective of the ear.

Fig. 5. Confusion Matrix for experiment on flexible matching
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